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Flow of stratified fluid through curved screens 

By Y .  L. LAUTAND W. D. BAINES 
Department of Mechanical Engineering, University of Toronto 

(Received 9 February 1968) 

A curved screen placed across a two-dimensional channel causes the streamlines 
to be deflected on passing through because of the variation in pressure drop across 
the section and the refraction effect at the screen. Uniform flows far upstream 
and far downstream are required by the boundary conditions. An analytical 
description is based on the separation of the field into two regions distant from 
the screen in which viscosity and molecular diffusion are negligible, plus a thin 
layer along the screen in which energy loss and streamline deflexion are concen- 
trated. These are described by empirical relationships. For linear velocity and 
density distribution upstream of the screen, equations can be simplified so that 
algebraic relationships between the variables a t  the screen surface are obtained. 
These have been solved numerically for the shape of screen required to produce a 
specified velocity distribution. An approximate solution is also obtained for 
general velocity profiles and the screen shape which produces uniform shear is 
derived. Experimental verification of the analysis is obtained from measurements 
of the velocity and temperature distributions downstream of the derived screen 
shapes mounted in a wind tunnel 45.6 cm square. 

It is also shown that the boundary layers along a tunnel wall are accelerated 
or retarded by the screen depending on the loss coefficient. This effect is evident 
in all observations. 

The case of homogeneous fluid is described by a simplified version of the 
analysis and several examples of velocity distributions are produced. These are 
verified by experiment and compared with those predicted by Elder (1959). 

1. Introduction 
A screen placed in a flow field causes deflexion of the streamlines towards the 

normal to the screen as they pass through, in a similar way to the refraction of 
light a t  a material interface. This is distinct from the pressure drop across the 
screen produced by the wakes of the elements. Schubauer, Spangenberg & 
Klebanoff (1950) revealed that the pressure drop is uniquely related to the solidity 
of the screen and the velocity component normal to it. They also found that the 
deflexion of the streamlines depended only upon the resistance coefficient of the 
screen defined as the ratio of the pressure drop to the kinetic energy of the 
velocity normal to the screen. For a curved screen placed in a 00w in which the 
upstream velocity is uniform, the streamlines from top to bottom will be incident 
upon the screen at  different angles. The pressure drop thus varies across the 
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section, inducing a lateral flow, and the refraction effect adds to it. As a result, 
the flow field downstream of the screen will not have the same velocity distri- 
bution. Conceivably, a screen could be shaped to produce the proper energy loss 
and deflexion of streamlines so that a uniform flow, after passing through the 
screen, becomes a flow with some prescribed velocity distribution. Shear flows 
with constant vorticity or boundary-layer-type velocity profiles could then be 
produced by means of curved screens placed in a wind tunnel. These have wide 
engineering applications in the simulation of meteorological and hydrological 
motions. Many of these flows occur in a fluid which is density stratified. In  this 
paper the stratification of a flow passing through a screen will be considered and 
experiments described which verify the analytical solution. 

In  recent years there have been extensive applications of screens in the pro- 
duction of specified velocity profiles. Owen & Zienkiewicz (1957) produced a 
linear profile in a homogeneous fluid by means of rods placed in the plane normal 
to the incident stream, but this involved the careful spacing of numerous rods 
a t  varying distances apart. It is not very efficient because slight variations in 
spacing produce large velocity changes and an inherently non-uniform turbulence 
field is produced which tends to smooth the profile. Elder (1959) considered 
curved screens and obtained a relationship between the shape of the screen and 
the upstream and downstream velocity profiles. This analysis was based on 
linearized equations and was verified for small streamline deflexions. However, 
the screen shape designed to produce a linear velocity profile did not do SO. The 
reason is outlined in appendix A. 

2. Solution of the streamfunction 
In the analysis given here, the solutions of the streamfunction upstream and 

downstream of the screen are matched at the screen. An approximation is made 
which enables the unknown constants in the solutions to be determined. An 
energy relationship is then used to predict the screen shape. 

2.1. Plow Jield far  from screen 
Consider the steady, two-dimensional flow of a non-homogeneous, incompressible 
fluid in a channel which has a screen of arbitrary shape placed across it. The effects 
of viscosity and molecuIar diffusivity are neglected everywhere except at the 
screen, where a dissipation of energy takes place. The flow fields upstream and 
downstream of the screen will thus be inviscid motions with density conserved. 

Co-ordinate axes x and y are chosen, x being the direction parallel to the wall. 
A transformation introduced by Yih (1958) is used to simplify the equations of 
motion. Writing 

u' = (P/PO)& u, d = ( P l P 0 ) k  $' = / ( P / P o ) +  d$, 

in which po is a reference density and u', v' and $' are the transformed velocities 
and streamfunction, the equation for II.' is 
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where 

variables without a prime refer to the physical field. 

dHld$' will generally be different for the two regions. 
This equation is valid either upstream or downstream of the screen although 

2.2. Upstream solution 

For simplicity, attention is restricted to the case in which the upstream density 
variation is linear and the upstream velocity u' constant. Far upstream, con- 
ditions are designated by the subscript - co, whence 

u'_, = uo (a constant), p--m = p o ( l  - p y ) ,  

where ~3 = (po  - p,)/h; po, the reference density, is the density at the bottom of the 
channel, y = 0;  andp, is the density a t  y = h, the height of the channel. Therefore 

Equation ( 1 )  becomes 

with boundary conditions 

$'= 0 at y = 0, $f = uoh at y = h,  $'= u o y  at lr = -m. 

Non-dimensional variables are introduced by writing 

Equation ( 2 )  then becomes 

where F = uo/h(g/3)* is the Froude number of the flow. 
The boundary conditions are 

'pi  = 0 at 7 = 0, IF'= 1 at 7 = 1, Y ' =  7 at < = -co, 

The solution of (3) has been given by Yih (1962) as 
m - 

Y' = q +  B,exp{(n2n2-F-2)*c}sinnny (< < 0). (4) 
12= 1 

It can be noted that the three boundary conditions given above are insufficient 
for the complete solution of Y'. The constants B, can be obtained only when the 
solution is matched with the downstream one at  the screen. 

This solution violates the condition at  x = -m if F < l / m ,  in which case 
waves are predicted which extend back to infinity. However, a Proude number of 
less than l / n  can only be obtained with very slow flows in a fluid with a high 
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density gradient. In  wind-tunnel studies, practical considerations mean that the 
value of F is always far in excess of lln. The case of F < 1/77 is not considered in 
this paper. 

2.3. Downstream solution for a linear case 

It will be assumed that there is negligible mixing at the screen so that dpld$' 
is the same function both upstream and downstream. The function dH/d$.' will 
be different from that upstream and for most velocity distributions dH/d$' 
are non-linear functions of @.' and the governing equation will be non-linear. 
However it can be seen that, if, a t  x = +co, 

where G and C are constants, (dH/d$')+, = G. With a density gradient attainable 
in wind-tunnel studies of say, 1 deg F/in. and a typical velocity of 20ft./sec in 
a tunnel 2ft. high, F-2 is approximately 0.006. The term &F-2q2 is thus small 
and the solution for the case of (dH/d$')+, = G will therefore be for a flow which 
is, in practice, linear far downstream. 

The governing equation, after substitution of dH/d@' = G and introduction of 
non-dimensional variables, is 

. -  

with boundary conditions 

Y '=o  at ~ = 0 ,  Y f = l  at q = l ,  

F-2 Gh q2 C O0 
Y' = -y3+---+-+ 2 D,exp(-nr[)sinnny (5 2 0). (6) 

2 ~ 0 ~ 0 2  uo n=l 

As is the case with the upstream solution, the constant D, can be evaluated 
when conditions at the screen are considered. 

2.4. Solution for  other downstream velocity projiles 

In  the previous sections, two cases in which dH/d$' is linear have been investi- 
gated. The only other linear case, dH/d$' = a + b$.', results in a velocity distri- 
bution of exponential form. For any other velocity distribution U l m ,  (dH/d$')+, 
is non-linear and will be difficult to solve. Therefore another method of solution 
for the flow downstream will have to be sought. 

The vorticity equation is 
DCY g ap 
~t p 0 a i  

- 
( 7 )  

where s1' = (aw'/ax-au'/ay) is the vorticity of the transformed flow. In this 
study, the density change in the y-direction is not large and in the absence of 
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excessively large deflexion of the streamlines, aplax will be very small. One can 
then write DQ'lDt = 0 without being very much in error. This means that the 
vorticity of the transformed flow is constant along a streamline and is equal to 
the vorticity at  infinity. Then one can write Y' = Y;,+Y*, where Y* is a 
perturbation streamfunction which does not add vorticity to the flow. 
Therefore V2Y* = 0 with 

aY*/ac= 0 at 7 = 0 and 7 = 1.  

m 

a= 1 
This gives Y f (  kE) = Yi.;,+ A,exp( Tnn-c)sinnnc. ( 8 )  

It can be seen that the formal solution for the case dH/d@' = G can be obtained 
by putting the corresponding Y+m into (8). This suggests that the assumption 
made concerning the preservation of Q' is not inappropriate. 

3. Conditions at the screen and solution of the screen profile 
The following terms will be defined (see figure 1): 6' = the angle between the 

normal to the screen at  any point and the x-axis; T = tan& Uh, U i  = normal 
and tangential velocity components at  the screen; T-,, qo, 7+m = co-ordinate of 
a streamline far upstream, at  the screen and far downstream. Subscripts 1 and 2 
refer to variables upstream and downstream of the screen. 

q =  1 \ 

FIGURE 1. Definition sketch. 

There are three conditions to be satisfied at  the screen: 
(i) For continuity requirements, the normal velocity component is conserved 

Uibl = Uk2 and from geometry this becomes 
through the screen. 
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(ii) The ratio of the tangential velocities is a constant. For round bar wire 
screens it was found by Schubauer et al. (1950) that at  small angles of incidence 
the tangential velocity component is changed by a factor 1.1( 1 +K)-*, K being 
the resistance coefficient of the screen defined as 

where Ap is the pressure drop across the screen. For any particular screen K is a 
constant a t  large screen Reynolds number. 

Hence U.i2/Uil = 1.1(1+ K)-& = 1 - D,  where D is a constant for a particular 
screen. 

This becomes 

It can be seen that at  either wall, where V' vanishes but not U',  equation (10) is 
satisfied only if T is equal to zero. If the screen is not perpendicular to the wall, 
(10) can properly be applied only outside of a layer of thickness 6 from the wall. 
6 has not been defined, but in the present experiments it is less than the thick- 
ness of the boundary layer. 

(iii) There is energy loss only at  the screen. The energy drop across the screen 
along any streamline is therefore equal to the difference between the energy on 
that streamline far upstream and far downstream. 

Consider a streamline which is at  height ro at the screen and at  heights Y - ~ ,  
q+a respectively far upstream and far downstream as shown in figure 1. Let the 
energy loss across the screen be equal to AH(rlo), 

Subscript 7o signifies that the quantities within the brackets are evaluated at  
7 = yo. Equating this with the energy difference a t  - 00 and + a3 gives 

n 

Equations (9), (10) and (11) are the three conditions from which the Fourier 
coefficients in the streamfunctions upstream and downstream and the screen 
inclination 8 are to be solved. 
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The first simplification required is that the screen is at  x = 0, which gives the 
velocities at  the screen from equations (4) and (6),  

m 

n=l 
U ; ( y 0 )  = 1 + 

V;(T*) = - x (n2n2 - F-2)6 Bn sin nny,, 

nnB, cosnny,, 

m 

n: 1 

F-2 Gh C 
UL(yo) = $ + yo + - + nnD, cos nny,, 

PoUo '1% n=l  

m 

n= 1 
VL(yo) = Z; nnD, sin nny,. 

These are substituted into (9)) (10) and ( l l ) ,  but brief inspection reveals that 
solution of these three equations will be very difficult. The Fourier coefficients 
B, and D, and the term T are non-linearly related. Equation ( 1  1) cannot be 
used until yVm, qo and y+m can be related and this requires knowledge of B, and 
D,. It is clear that a further simplifying assumption has to be made. 

3.1. Ximplijications for the solution 
It is assumed that the streamline pattern for the present case is much the same 
as if a screen normal to the flow is used to deflect the streamlines into the required 
downstream pattern. This enables equations (9) and (10) to be uncoupled from 
(1 1). Even though the values of U' and V' so calculated may not be exact, the 
errors involved when these are introduced into (11)  will not be serious if the 
inclination of the screen, and hence T, is small. This is in fact compatible with the 
assumption that the velocities U'(qo) and T"(yo) are calculated at x = 0. Under 
the same assumption, terms involving V'T and T2 in (11) are also dropped. 
Equations (9)) (10) and (11 )  are thus simplified to 

W 7 0 )  = G ( V O ) >  (12) 

(13) ( 1  - 0 V7;(?J) = VL(TrI)> 
c0s2 e(70) [KU;(vo) + J'7;(~0) - J'L2(y0)I = [ u ' 2 (  - 00,y-m) - u"( + 30, r + m ) I  

For the velocity profiles described in 552.2 and 2.3, equations ( 1 2 )  and (13) 
become 

m m 

and (n2n2- F-2)* B, sin nny, = nnD, sin nnqo, 1 n-1 
from which 

1 - D  
nn 

and D, = -__ (n2n2 - F-2)tBn. 
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For a given yo, y--m and r+m can now be calculated by equating the values of the 
streamfunction a t  the screen with those at  infinity, 

Equation (14) becomes 

In applying (18), the constant last term on the right-hand side has to be specified. 
This is accomplished by specifying the screen slope at the wall as 0 = 0. It is 
thereby assured that the deflexion equation is satisfied along the streamline 
y = 0. However, there is only one constant which can be specified and so the 
screen slope a t  y = 1 must be accepted at the value given by the analysis. Hence 
the velocity distribution produced may not be correct near y = 1. 

The profile of the screen can be calculated by choosing a particular v0, cal- 
culating y--m and y+m from (17) and then C O S ~ B ( ~ ~ )  from (18). The process is 
repeated for various values of y from 0 to 1. With the screen position at  the 
bottom as x = 0, the screen position at  height yo is given by 

4. Experimental procedure 
An experimental program was developed to verify the above analysis and, in 

particular, the assumptions made about the small screen slope and the effect of 
the screen on molecular transport. 

The experiments were conducted in the heated wind tunnel of the Department 
of Mechanical Engineering, University of Toronto. The tunnel speed was 
approximately 20 ft./sec. Density stratification was produced by means of 
cylindrical rods placed across the tunnel, to which electrical power was supplied. 
Temperature in the tunnel was measured with a copper-constantan thermo- 
couple. Mean velocity and pressure readings were made with total head and static 
pressure probes. 

A removable test section was formed to the calculated screen profile and the 
screen mounted over it. This is inserted into the tunnel and measurements were 
then made at stations upstream and downstream. Lau (1966) provides further 
details regarding the experimental technique. 
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5. Discussion of cases tested 
Several cases with different downstream and upstream velocity distributions 

were taken and the screen profiles were solved for and then tested. Tests were 
made on both stratified and homogeneous fluids; the latter are discussed in 
appendix A. 

(i) The linear case of dH/d$/.’ = G was first tested. The mathematical model was 

Two values of Glu, were arbitrarily chosen, so that the desired velocities were 
U ; ,  = 0-95 + 0.27 + 0.001872 and 

This corresponded to the velocity U,, varying from 0.9 to 1.118 in the first case 
and from 0.85 to 1.168 in the other. 

In  calculating the streamfunctions and velocities, the series summation was 
taken from n = 1 to 120. Additional terms were found to produce negligible 
difference. 

Figures 2 and 3 show the velocity profiles for these two tests. The results agree 
very well with theory. The only discrepancy appears inside the boundary layers 
as expected. For values of 7 between 0-075 and 0.85, the profiles are practically 
linear. Within the boundary layers there is a bulge in the downstream profile. 
This is due to the peculiar effect of the screen on a boundary-layer velocity distri- 
bution discussed in appendix B. The shear characteristics seem to remain fairly 
constant as the flow progresses. 

The screen properties and profile for these cases are shown in table 1. Note that 
the screen is not normal to the wall at  7 == 1, which means that the deflexion 
equation (10) is not satisfied there. The streamlines near the top wall are still 
being deflected upward, but the wall effectively forces fluid back into the flow 
which contributes to the slightly bigger bulge at the top boundary layer. 

Profiles of temperature distribution for these two cases are shown on figures 
4 and 5. The verification of the predicted shape in the central region is again very 
good. In  the boundary layers there is again a bulge resulting from the wall as 
discussed in the appendixes. It should be noted that the temperature distribution 
is dictated by the upstream and downstream velocity profiles and the upstream 
temperature owing to the assumption that density is conserved along streamlines. 
For this reason the temperatures 8, along the bottom wall and 8, along the top 
wall are the same on both sides of the screen. In  the centre the deviation of the 
downstream profile from the one upstream (linear in this case) is a measure of the 
streamline deflexion. Relatively small deflexion was required to produce the 
20 and 30 yo velocity variation. This is the main reason why the verification is 
so good even though the screen slope is large, as shown in table 1. 

(ii) Velocity profiles were chosen so that the governing equation was non- 
linear and the solution of $2.4 had to be used. The mathematical model was 
U-,  = 1 and V,, = (C/uo) + bg,  which meant that V-m = (1 -/3h7)* and 

U>,  = 0.85 + 0.37 + 0.001872. 
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The results, shown on figures 6 and 7, indicate good agreement with theory. 
Bulges again are found in the boundary layers. The general shape of the screen is 
the same as the previous ones, normal to the wall at  the bottom and curving with 
the concave side upstream so as to deflect all the streamlines upstream. For 
details of the screen profiles used, see Lau (1966). 

Test no. 1. 
u:, = 0.9 + 0.27 + 0.0018y2, 

p = 0.02 

7 
0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 

JTd? 
0.00 
0.004 
0-013 
0-024 
0.039 
0.054 
0.072 
0.091 
0.112 
0.134 
0.158 
0.183 
0.210 
0.238 
0.268 
0-298 
0.331 
0-363 
0.398 
0.434 
0.471 

Test no. 2. 
U : ,  = 0.85 + 0-307 + 0.0018r]a, 

p = 0.02 
A 

7 7 

7 p dv 
0.00 0.00 
0.05 0.005 
0.10 0.0 16 
0.15 0.030 
0.20 0.048 
0.25 0.068 
0.30 0.091 
0.35 0.115 
0.40 0.142 
0.45 0.170 
0.50 0.202 
0.55 0.234 
0.60 0.269 
0.65 0-305 
0.70 0.345 
0.75 0.385 
0.80 0.428 
0.85 0.472 
0.90 0.520 
0.95 0.568 
1.00 0.620 

TABLE 1. Profile and properties of the screens tested for the case of a stratified flow with 
constant dH/dyY. Screen properties: 20 mesh, 0.016 in. diameter, solidity 0.538, K = 2-0 

These experiments have provided adequate proof that the analysis can be used 
to predict the flow through curved screens with small streamline deflexion and 
density variation. For even these cases large screen slopes are required if screens 
of low solidity are used. Note that T > 1 new 7 = 1 for both examples in table 1. 
Screens of large solidity ratio cannot be used in practical applications because of 
the instability discussed by Baines & Peterson (1951) and the effect on the 
boundary layer described in appendix B. 

Appendix A. Application to homogeneous fluids 
This analysis can be applied to the flow of a homogeneous fluid by setting 

p = 0 in all equations. No mathematical approximations are involved and the 
solution is not appreciably simpler than for a stratified fluid. Compared with the 
analysis of Elder (1959) it is much more complex and the screen shape calculation 
is more tedious. The essential difference between the two is the Iinear approxima- 
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tion adopted by Elder for the energy loss equation (14). Elder assumed that for a 
screen the loss coefficient was constant for ally and that the velocity distributions 
everywhere differed from a constant velocity by a small amount. These assump- 
tions appear to be too severe considering the large screen slope required in 
practice. 

A comparison was made between the two analyses for flat sloping screens. 
These were mounted a t  angles of 10" and 24" to the normal to the flow. The 
measured velocity profile followed equally well both this analysis and that of 
Elder. However, for those small screen slopes all of the pertinent variables are 
small enough to be considered perturbations. This kind of comparison is not 
definitive but shows that in practice the analysis of Elder is preferred because of 
its simplicity. 

The production of a constant shear flow from a constant upstream velocity 
was also studied. Screens were designed, using the above analysis, to produce 
velocity gradients dUldy of 0.3 and 0.5 respectively. These were constructed and 
the downstream velocity profiles measured. Agreement was the same as for the 
stratified flows shown on figure 6. Constant shear was produced over the central 
80 yo of the flow. In  the boundary layer the same bulges were found. 

A screen constructed following the analysis given in $ 7  and illustrated on 
figure 6 of Elder (1959) was found to produce an S-shaped velocity profile. This 
agreed with the constant shear equation over only the central 20 yo of the flow. 
The reason for this lack of confirmation appears to be mainly due to the evalua- 
tion of Elder's equation (7.2) which in his notation is: 

The function log tan i t  cannot be expanded in a Taylor series about t = 0 because 
of its limit value. Elder chose to expand it about t = +-, i.e. the duct centre line. 
If, however, the expansion of log i t  tan i t  is considered, it is found possible to 
evaluate the integral in a straightforward manner. Integrating the result once 
gives the screen slope and a second integration gives the profile, 

BEn3 x 
h L  

127 
+45 x-18900 (:)8+ ...]. (A2) 

It can be shown directly from (A 1) that this profile is normal to both walls w = 0, 
ui = &T and is anti-symmetric about the centre line w = in. In  addition the slope 
near the centre line must be approximately linear because of the point of in- 
flexion. 

On figure 8 the shape given by (A 2) is compared with the one produced by this 
analysis for h = 0.5 using a screen with K = 4.2. Over half of the section the 
shapes are virtually identical, but for the upper half which is the larger velocity 
region there is a significant difference. It is not unreasonable that the non-linear 
effects are greater for the larger velocity but rapid deviation of the shapes would 
not be expected from elementary considerations. 
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Other velocity distributions were produced using this analysis to evaluate the 
practical applications. In  one instance, a +-power law was produced from a 
uniform velocity distribution upstream. In  another a large velocity excess was 
created by blocking most of the tunnel inlet except the central section. The 
maximum velocity was about 1-3 times the mean. A screen was designed to pro- 
duce a constant velocity from this condition. In both of these cases the measured 
downstream profiles were as close to the desired one as would be expected. 
Figure 9 presents the results for the case of profile rectification. 

Appendix B. Effect of screens on the velocity profile in the boundary 
layer 

It was mentioned by Owen & Zienkiewicz (1957) that the velocity profiles they 
obtained departed from linearity near the walls. A bulge in the velocity profile 
appeared. Their explanation was that the fluid in the boundary layer, having a 
smaller velocity, suffered a smaller loss in total head than the fluid outside when 
passing through the screen. Hence the total head after the screen would increase 
towards the wall. 

FIGURE 10. Kinetic energy distribution in the boundary hyer behind a screen. 

Even though cylindrical rods were used in their experiments, the same phe- 
nomenon can be expected when fluid flows through a screen. A simple analysis 
with the energy equation shows that this is indeed true except when K is less than 
or equal to one. 

Consider a flow with a boundary-layer velocity profile approaching a screen. 
For simplicity, neglect density stratification and let the screen be normal to the 
plane of flow. The energy balance can be written as 

*liPu2(0,110) = *pP[u2( -a, 11-m) - u2( + a, r,co)l+ r2-4 - a , O )  -P( 4- a, 011. 

In  the boundary layer, the streamlines are not subjected to  large deflexions 
and u2( - m, T - ~ )  is approximately equal to u2(0, vO). Hence 

4 P Z (  + 00, 11+m) z5 rp( - 0 0 3 0 )  -24 +a, 011 - Q(h'- 1)pu2( -00, 11-04. 
The kinetic energy downstream is then equal to the difference in static pressure 

at the wall, which does not vary with 7, minus ( K  - 1) times the kinetic energy 
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upstream. Therefore, if K > 1, u2( + co, T + ~ )  will be a maximum at the bottom 
and will decrease with y. If K < 1, the kinetic energy would increase with y and 
then become constant. These are shown qualitatively in figure 10, with the dotted 
line indicating the effect of shear stress. 
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FIGURE 11. Effect of screen resistance coefficient on velocity distribution in the boundary 
layer. 0, K = 4-5; x ,  K = 2.4; A,  K = 1.5; 0 = 0.97. All downstream measurement’s 
are for = 2.32. 

Screens that are in common use generally have values of K greater than one. 
Therefore it can be expected that the artificially produced velocity distributions 
will have bulges near the walls which increase with the value of K used. 

Screens with different K were inserted normal to the flow to check this effect. 
Screens of 18-mesh to 30-mesh with K varying from 0.97 to 4.2 were used. The 
velocity profiles are presented in figure 11. The result of the analysis is un- 
doubtedly verified. With a screen having a K value of 0.97, the downstream 
velocity distribution shows no abnormality. However, with K values of 1.5, 
2.43 and 4.5 respectively, increasingly larger velocity bulges appear. The exact 
location and size of the bulge cannot be determined by the present analysis since 
this involves the wall friction and shear stresses in the boundary layer. 

These tests indicate that, as far as possible, screens with K value higher than 
4 should not be used because of the big bulges produced in the boundary layer. 

47 Fluid Mech. 33 
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An attempt to produce a linear velocity distribution with a 40-mesh screen 
having a K of 4.2 was not as successful as the others because of the large bulge in 
the boundary layer. On the other hand, a screen with too small a K value would 
require excessively large curvature to produce the required deflexion. In general, 
a K value of 2 was found to be most satisfactory. 
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